Minimum Cost and List Homomorphisms to Semicomplete Digraphs

نویسندگان

  • Gregory Gutin
  • Arash Rafiey
  • Anders Yeo
چکیده

For digraphs D and H, a mapping f : V (D)→V (H) is a homomorphism of D to H if uv ∈ A(D) implies f(u)f(v) ∈ A(H). Let H be a fixed directed or undirected graph. The homomorphism problem for H asks whether a directed or undirected graph input digraph D admits a homomorphism to H. The list homomorphism problem for H is a generalization of the homomorphism problem for H, where every vertex x ∈ V (D) is assigned a set Lx of possible colors (vertices of H). The following optimization version of these decision problems was introduced in [16], where it was motivated by a real-world problem in defence logistics. Suppose we are given a pair of digraphs D, H and a positive cost ci(u) for each u ∈ V (D) and i ∈ V (H). The cost of a homomorphism f of D to H is u∈V (D) cf(u)(u). For a fixed digraph H, the minimum cost homomorphism problem for H, MinHOMP(H), is stated as follows: For an input digraph D and costs ci(u) for each u ∈ V (D) and i ∈ V (H), verify whether there is a homomorphism of D to H and, if it exists, find such a homomorphism of minimum cost. We obtain dichotomy classifications of the computational complexity of the list homomorphism problem and MinHOMP(H), when H is a semicomplete digraph (a digraph in which every two vertices have at least one arc between them). Our dichotomy for the list homomorphism problem coincides with the one obtained by Bang-Jensen, Hell and MacGillivray in 1988 for the homomorphism problem when H is a semicomplete digraph: both problems are polynomial solvable if H has at most one cycle; otherwise, both problems are NP-complete. The dichotomy for MinHOMP(H) is different: the problem is polynomial time solvable if H is acyclic or H is a cycle of length 2 or 3; otherwise, the problem is NP-hard. ∗Corresponding author. Department of Computer Science, Royal Holloway University of London, Egham, Surrey TW20 OEX, UK, [email protected] and Department of Computer Science, University of Haifa, Israel †Department of Computer Science, Royal Holloway University of London, Egham, Surrey TW20 OEX, UK, [email protected] ‡Department of Computer Science, Royal Holloway University of London, Egham, Surrey TW20 OEX, UK, [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Minimum cost homomorphisms to locally semicomplete digraphs and quasi-transitive digraphs

For digraphs G and H, a homomorphism of G to H is a mapping f : V (G)→V (H) such that uv ∈ A(G) implies f(u)f(v) ∈ A(H). If, moreover, each vertex u ∈ V (G) is associated with costs ci(u), i ∈ V (H), then the cost of a homomorphism f is ∑ u∈V (G) cf(u)(u). For each fixed digraph H, the minimum cost homomorphism problem for H, denoted MinHOM(H), can be formulated as follows: Given an input digra...

متن کامل

The complexity of colouring by locally semicomplete digraphs

In this paper we establish a dichotomy theorem for the complexity of homomorphisms to fixed locally semicomplete digraphs. It is also shown that the same dichotomy holds for list homomorphisms. The polynomial algorithms follow from a different, shorter proof of a result by Gutjahr, Welzl and Woeginger.

متن کامل

Minimum Cost Homomorphisms to Semicomplete Bipartite Digraphs

For digraphs D and H, a mapping f : V (D)→V (H) is a homomorphism of D to H if uv ∈ A(D) implies f(u)f(v) ∈ A(H). If, moreover, each vertex u ∈ V (D) is associated with costs ci(u), i ∈ V (H), then the cost of the homomorphism f is ∑ u∈V (D) cf(u)(u). For each fixed digraph H, we have the minimum cost homomorphism problem for H. The problem is to decide, for an input graph D with costs ci(u), u...

متن کامل

Minimum Cost Homomorphisms to Locally Semicomplete and Quasi-Transitive Digraphs

For digraphs G and H , a homomorphism of G to H is a mapping f : V (G)→V (H) such that uv ∈ A(G) implies f(u)f(v) ∈ A(H). If, moreover, each vertex u ∈ V (G) is associated with costs ci(u), i ∈ V (H), then the cost of a homomorphism f is ∑ u∈V (G) cf(u)(u). For each fixed digraph H , the minimum cost homomorphism problem for H , denoted MinHOM(H), can be formulated as follows: Given an input di...

متن کامل

Minimum Cost Homomorphisms to Semicomplete Multipartite Digraphs

For digraphs D and H , a mapping f : V (D)→V (H) is a homomorphism of D to H if uv ∈ A(D) implies f(u)f(v) ∈ A(H). For a fixed directed or undirected graph H and an input graph D, the problem of verifying whether there exists a homomorphism of D to H has been studied in a large number of papers. We study an optimization version of this decision problem. Our optimization problem is motivated by ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Applied Mathematics

دوره 154  شماره 

صفحات  -

تاریخ انتشار 2006